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Abstract 

Puget Sound (Washington, USA) is a large estuary, known for its profitable shellfish aquaculture 

industry. However, in the past decade, scientists have observed strong acidification, hypoxia, and 

temperature anomalies in Puget Sound. These co-occurring environmental stressors are a threat to 

marine ecosystems and shellfish aquaculture. Our research assesses how environmental variability 

in Puget Sound impacts two ecologically and economically important bivalves, the purple-hinge 

rock scallop (Crassodoma gigantea) and Mediterranean mussel (Mytilus galloprovincialis). Our 

study examines the effect of depth and seasonality on the physiology of these two important 

bivalves to gain insight into ideal grow-out conditions in an aquaculture setting, improving the 

yield and quality of this sustainable protein source. To do this, we used Hood Canal (located in 

Puget Sound) as a natural multiple-stressor laboratory, which allowed us to study acclimatization 

capacity of shellfish in their natural habitat and provide the aquaculture industry information about 

differences in growth rate, shell strength, and nutritional sources across depths and seasons. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 



Alma et al. 2023  Bivalve Acclimatization in Puget Sound 

2 
 

Bivalves were outplanted at two depths (5 and 30 m) and collected after 3.5 and 7.5 months. To 

maximize mussel and scallop growth potential in an aquaculture setting, our results suggest 

outplanting at 5 m depth, with more favorable oxygen and pH levels. Mussel shell integrity can be 

improved by placing out at 5 m, regardless of season, however, there were no notable differences 

in shell strength between depths in scallops. For both species, δ13C values were lowest at 5 m in 

the winter and δ15N was highest at 30 m regardless of season. Puget Sound’s combination of 

naturally and anthropogenically acidified conditions is already proving to be a challenge for 

shellfish farmers. Our study provides crucial information to farmers to optimize aquaculture grow-

out as we begin to navigate the impacts of climate change. 

 

Keywords: bivalve, acclimatization, temperature, oxygen, ocean acidification, aquaculture 

 

1. Introduction 

Coastlines are ideal habitats for most bivalves, where water is shallow, primary production is high, 

and there is substrate to settle onto (Borges and Gypens, 2010). The natural complexity and 

variability of coastal systems has allowed bivalves to evolve a wide tolerance to changing 

environmental conditions over millennia. However, anthropogenic disturbances at global to 

watershed scales across the last two centuries have caused dramatic changes in temperature, 

fluctuations in the thermocline, shoaling of the aragonite saturation horizon, and reduced dissolved 

oxygen (DO) with depth in marginal seas (Feely et al., 2012). Rising atmospheric CO2 

concentration is predicted to result in warmer ocean temperatures, hypoxia, ocean acidification 

(OA), and extreme weather (Gruber et al., 2012; Melzner et al., 2011; Moritsch et al., 2022; 

Rykaczewski and Dunne, 2010). OA is the process in which increased levels of atmospheric CO2 

dissolve into the ocean resulting in a more acidic environment (Jiang et al., 2023). This reduction 
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alters carbonate chemistry making it difficult for calcifiers to build their shells and results in the 

dissolution of existing shell (Ekstrom et al., 2015; Melzner et al., 2020). Hypoxia, or lower 

dissolved oxygen levels, often increase with depth and stratification, and can also be the result of 

increased nutrient loads from runoff and upwelling, resulting in extreme algal blooms called 

eutrophication (Gobler and Baumann, 2016). Local anthropogenic nutrient load from agriculture, 

sewage, runoff, and other human activities have increased eutrophication, which exacerbates 

hypoxia and OA in coastal areas (Borges and Gypens, 2010; Wallace et al., 2014). 

 

In Washington state, USA, the shellfish aquaculture industry is an vital economic driver with an 

estimated annual income of $270 million (Barton et al., 2015). Puget Sound, Washington, is the 

second largest estuary in the USA and home to numerous shellfish farms. Organisms living in the 

Puget Sound have experienced acidified conditions, temperature anomalies, and hypoxia levels 

that exceed levels predicted by the Intergovernmental Panel on Climate Change (IPCC, RCP 8.5) 

global climate models for the end of the century over the past decade (Alin et al., 2023; IPCC, 

2014; Wallace et al., 2014). Hood Canal, a large fjord-like channel on the west side of Puget Sound, 

has recorded some of the most extreme oceanographic conditions in the Pacific Northwest (Alin 

et al., 2021; Feely et al., 2010). Our study was conducted in Hood Canal, just offshore of the Taylor 

Shellfish Hatchery (Figure 1), a large commercial bivalve aquaculture farm. In Hood Canal, 

environmental variability is influenced by seasonal upwelling, snowmelt, riverine freshwater 

inputs, anthropogenic activity, and relatively high water residence time. During colder months, the 

water is well mixed, and the pycnocline is weakly defined (Feely et al., 2010). In contrast, during 

warm months of the year the water column is characterized by a defined pycnocline, warm upper 

layer, and cold, hypoxic, acidified bottom-waters. It is predicted that global warming will 
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strengthen and lengthen stratification in Puget Sound and may affect bivalve populations (Moore 

et al., 2015). We chose Hood Canal to conduct our study because Taylor Shellfish Farm has 

experienced challenges with bivalve production and survival since 2007 due to ocean acidification 

(Barton et al., 2015). Currently the hatchery buffers incoming hatchery seawater to raise carbonate 

ion availability for shellfish larvae and combat larval mortality due to acidification of the 

surrounding waters (Barton et al., 2015; Hoegh-Guldberg et al., 2015). By studying acclimatization 

(or the change in an organism’s physiology based upon changes in the environment) of shellfish 

at this commercial hatchery, we provide important information that can assist with the optimization 

of shellfish aquaculture in the face of rapid ocean and climate change. In our study, we examined 

shellfish acclimatization potential by looking at the effects of environmental variability on the 

physiological performance of the purple-hinge rock scallop (Crassodoma gigantea) and the 

Mediterranean mussel (Mytilus galloprovincialis).  These species are considered ecologically 

important because of their ability to filter water, sequester nitrogen and carbon, and their shells 

form reefs and provide hard surfaces for other organisms to settle, thus increasing biodiversity 

(Gutiérrez et al., 2003). C. gigantea is a native species to the North American Pacific Coast, and 

the aquaculture industry has great interest in the potential commercial profitability of this species 

(Culver et al., 2006; Leighton and Phleger, 1977; Walker, 2016). Its large edible adductor muscle 

is considered a delicacy that is expected to sell at a high market value. Although there is much 

interest in this species in the aquaculture industry, research on this species is very sparse when 

compared to many other bivalves, and we are only beginning to understand its responses to 

oceanographic stressors (Alma et al., 2020; Jackson, 2021). M. galloprovincialis is an edible 

mussel which is extensively cultured in the aquaculture industry and is well-studied due to its 

ecological and economic importance worldwide. This species of mussel is native to the 
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Mediterranean Sea and Atlantic Ocean but was introduced to Puget Sound in the early 20th century 

by the aquaculture industry.  

 

We seek to explore an important question: what is the acclimatization potential of bivalves when 

subjected to dynamic environmental conditions? Our study provides a snapshot of potential 

product quality in a long-line aquaculture setting, which may assist the aquaculture industry in 

optimally placing their shellfish for grow-out. The aquaculture industry has the ability to harness 

the scope for acclimatization in bivalves and select for favorable characteristics by modulating in 

situ grow-out conditions through space and time. They may be able to take advantage of this 

plasticity to continue producing optimal product as conditions change into the future. Maximizing 

growth and shell integrity is important to aquaculture because it can optimize profit and 

marketability. 

 

By holding the two ecologically and economically important species at either 5 m or 30 m depths 

for 3.5 or 7.5 months in the inland fjord of Hood Canal, we used this dynamic “natural laboratory” 

with multiple co-occurring climate change-related stressors. Our experiment spanned December 

to June at two depths, allowing us to capture both seasonal mixing patterns (well-mixed and 

stratified). While the quantity of climate change-related multiple stressor experiments has been 

increasing in the literature, many experiments are performed in the laboratory within carefully 

controlled conditions that fail to effectively represent the complexity of real-world scenarios where 

multiple stressors interact and fluctuate (Hofmann et al., 2011; McElhany, 2017; Reum et al., 

2014). It is, therefore, critical to study physiological performance in the naturally variable 

environment, where numerous parameters (e.g. temperature, pH, salinity, dissolved oxygen) 
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fluctuate simultaneously and interact with each other at various spatiotemporal scales to affect 

organismal performance (Wernberg et al., 2012). To assess bivalve field acclimatization potential, 

we measured physiological metrics including growth rate, shell strength, and isotopic composition, 

and we associated their responses to estuarine conditions experienced during their deployment. 

We hypothesized larger differences in physiological response metrics between depths in spring, 

when there is less vertical mixing, as opposed to the well-mixed water column in the winter. 

Climate change-related parameters like OA, hypoxia, and warming temperatures are expected to 

vary across depths and seasons and affect the growth rate, shell strength, and stable isotope profiles 

of mussels and scallops. We hypothesize that both growth rate and shell strength will be greater at 

the 5 m depth in spring due to higher temperatures and more favorable oxygen and carbonate 

chemistry conditions. Isotopic signatures can reflect subtle changes in physiology based on the 

environment and can thus provide important information regarding bivalve grow-out placement. 

We expect to see higher δ15N and δ13C at the deeper depths where the nutrient supply is rich, and 

terrestrial food sources are not as prominent (Fry, 2006). Understanding how in situ environmental 

variability affects bivalve skeletal properties, growth rate, physiological performance, and changes 

in biochemistry is vital to accurately predicting the acclimatization potential of these economically 

and ecologically important species. 

 

2. Methods 

2.1. Field Conditions 

Our study site was located just offshore of Taylor Shellfish Farms in Hood Canal, Puget Sound, 

Washington (47.820°, -122.833°, Figure 1). M. galloprovincialis is often grown on long-lines, 

which usually span 20–100 m depth and can experience a large breadth of oceanographic 
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conditions, leading to differences in aquaculture product quality along the long-line with depth 

(Araújo et al., 2020; Aure et al., 2007; Smart, 2019). Furthermore, the depth range in our study is 

consistent with the purple hinge rock scallop habitat, which spans the low-intertidal to 80 m 

(Bourne, 1987; Whyte et al., 1990).  

 

Chlorophyll-a (chl-a) data, used to quantify phytoplankton biomass, was not directly measured at 

our field site, but we used fluorometer data measured in situ by the Dabob Bay Oceanic Remote 

Chemical Analyzer (ORCA) buoy located 2.3 km from our study site. The ORCA buoy was not 

functioning during our study period, so we averaged by day of year all available chl-a data from 

2010 to 2021 at 5 and 30 m depth to approximate chl-a levels in the area. 

 

2.2. Seawater Chemistry 

Our two depths were chosen because they correspond to the shallow (5 m) and deep-water (30 m) 

intake pipes at Taylor Shellfish Hatchery. At these depths, we were able to deploy cages and 

measure environmental variables simultaneously. Water from the two depths was brought up to a 

fixed shore platform, and weekly oceanographic data were recorded throughout the experiment 

(temperature, salinity, and dissolved oxygen). Discrete water samples from each depth were 

collected from the intake lines weekly and preserved with mercuric chloride for carbonate 

chemistry analysis in accordance with ocean carbon community standard operating procedures 

(Dickson et al., 2007). Carbonate chemistry bottle samples were processed at NOAA’s Pacific 

Marine Environmental Laboratory (PMEL), Seattle, Washington. Dissolved inorganic carbon 

(DIC) concentrations were measured on analytical systems consisting of a coulometer (UIC, Inc.) 

coupled with a Single Operator Multiparameter Metabolic Analyzer (SOMMA) developed to 
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extract DIC from seawater. Total alkalinity (TA) samples were analyzed according to the open-

cell titration standard operating procedure (SOP 3b in Dickson et al., 2007), using a custom 

analytical system built at Scripps Institution of Oceanography (SIO). DIC instruments were 

calibrated via gas loops. Instrument accuracy and precision for DIC and TA analyses were 

monitored at regular intervals using Certified Reference Materials (CRMs), consisting of filtered 

and UV-irradiated seawater supplied by the Dickson Lab (SIO). Uncertainty for DIC and TA 

measurements is ± 0.1% of measured values (roughly ±2 µmol/kg). More complete description 

and references on DIC and TA analytical methods can be found in the metadata for (Alin et al., 

2021). Using DIC, TA, temperature, and salinity data, we calculated the saturation state of the 

aragonite form of calcium carbonate (Ωara), partial pressures of CO2 (pCO2), and pHT (pH on the 

total scale) values using the CO2SYS program (Pelletier et al., 2007) with Lueker et al. (2000) 

dissociation constants. 

 

2.3. Field Experiment and Growth 

We obtained eight-month-old, purple-hinge rock scallops (C. gigantea) and one-year old 

Mediterranean mussels (M. galloprovincialis) from Taylor Shellfish Farm. Scallops were bred in 

the hatchery from wild broodstock. The non-native mussels are from an aquaculture hatchery line, 

bred using ~1000 individuals from existing Taylor Shellfish farmed populations. We measured 

shell height (from hinge to apex) using a caliper (0.1 mm precision) and tagged individuals by 

adhering numbered “bee tags” (Betterbee, Greenwich, New York) to their shells with superglue 

(Pacer Technology Zap-A-Gap Adhesives). At the beginning of the experiment, December 10, 

2016 (T0), we dissected n = 10 individuals from each species, flash froze their tissue, and placed 

them in a -80 °C freezer for storage. All individuals were measured before the start of the field 
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experiment to define starting size. For mussels (n = 54), average shell length ± S.E. was 49.7 ± 

0.40 mm, shell width was 27.40 ± 0.22 mm, and weight was 9.80 ± 0.31 g. For scallops (n = 46), 

average shell length was 40.85 ± 0.34 mm, shell width was 40.05 ± 0.36 mm, and weight was 9.41 

± 0.24 g. For the field experiment, n = 300 shellfish were placed into mesh oyster bags made of 

semirigid HDPE plastic and secured with zip ties to form a bag ~ 0.4 m3. On December 11, 2016, 

shellfish (n = 600 shellfish per species) were deployed to our study sites at 5 and 30 m below the 

surface using SCUBA. We collected subsets of scallops and mussels 3.5 and 7.5 months after 

deployment (March 22, 2017, and June 27, 2017, respectively). We quantified growth rate by 

measuring the shell height of individuals, subtracting the initial shell height, and dividing by time 

deployed (Gobler et al., 2017; Hiebenthal et al., 2012; Kim et al., 2013; Riascos and Guzman, 

2010). We cleaned all remaining tissue off shells with terrycloth and stored them at room 

temperature for future shell strength analysis. We then flash froze tissue samples and stored them 

at -80 °C for further analysis. 

2.4. Shell Strength 

We measured shell thickness and point-crushed the shell with a hydraulic press to quantify the 

force it took to puncture the shell. Dry shells (n = 50 for mussels, n = 46 for scallops) were 

rehydrated in seawater for 24 hours prior to crushing. We used a micro-caliper to measure shell 

thickness to the nearest 0.01 mm. An Instron Universal Testing Machine measured the force (in 

newtons, N) needed to create a hole in the shell (Wilkie and Bishop, 2012). We punctured two 

holes into the shell (one at 1 cm from the edge of the shell and the other in the middle of the shell) 

at 30 mm/min using a steel pin with a diameter of 2.5 mm. We averaged the puncture forces for 

each individual shell and calculated S, which is shell strength expressed in megapascals (N mm-2). 
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S can be calculated by normalizing F (the maximum penetrating force, in N), by t (shell thickness, 

in mm), and d (diameter of the punch, in mm) (Carnarius et al., 1996; Ikejima et al., 2003; Tyler, 

1961).  

2.6. Isotopic Signatures 

We freeze-dried (VirTis Co.) the visceral mass of scallops and mussels and homogenized them 

using a ball-mill (Wig-L-Bug Model MSD). To measure δ13C and δ15N stable isotope values, we 

weighed 600 ± 10 µg of freeze-dried and ground shellfish tissue (n = 10 per cohort) using a 

microbalance (sensitivity 10 µg) and packed it into a small tin. Glutamic Acid I, II (0.42 µg) and 

Bristol Bay salmon (0.339 µg) standards of known isotopic composition were packed into tins and 

interspersed with our samples. Samples were processed at University of Washington’s IsoLab on 

a Finnigan MAT253 mass spectrometer connected to a Costech elemental analyzer in continuous-

flow mode (https://isolab.ess.washington.edu/laboratory/solid-CN.php) in accordance with 

methods highlighted in Fry et al. (1992). δ13C and δ15N results are reported as parts per thousand 

relative to the reference standard Vienna PeeDee Belemnite (VPDB) and atmospheric air, 

respectively.  

2.7. Statistical Analysis 

Prior to analysis, a Shapiro-Wilks Test was performed to assess normality, and if needed, values 

of analysis were log10, arcsine, or square root transformed to achieve normality assumptions before 

a model was run. We ran ANOVA and Tukey-HSD tests in R version 1.0.53 to determine 

significant differences in growth, shell strength, and isotopic signatures among collection times, 

depths, and species. A correlation matrix was created to determine co-varying oceanographic 

https://isolab.ess.washington.edu/laboratory/solid-CN.php
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conditions using the corrplot package in R (Taiyun, 2014). Data for this project can be accessed at 

https://doi.org/10.6084/m9.figshare.21809631.v1 (Alma, 2023). 

 

3. Results 

3.1. Field Conditions and Seawater Chemistry 

Hood Canal seawater chemical and physical properties varied greatly by depth and season (Table 

1). Throughout the winter (December 11, 2016, to March 22, 2017), water at 30 m depth was ~ 

1.5 °C warmer than water at 5 m depth; however, in the spring (March 23 to June 27, 2017), water 

at the shallow depth was ~ 3.8 °C warmer (Figure 2A, Table 1) than at 30 m. We found higher 

variability in temperature at 5 m than 30 m (Figure S1). Water temperature at 5 m fluctuated 

between 6.8 and 18.8 °C throughout the seven-month study, while temperatures at 30 m remained 

more consistent at 7.8–11.3 °C. The minimum and maximum temperatures recorded in this study, 

6.8 and 18.8 °C, were obtained at the shallow depth in January and June, respectively (Figure 2A). 

Salinity was lower and more variable at 5 m depth (22.7–29.4) than at 30 m (28.3–30.3) (Figure 

2B, Figure S1). Salinity fluctuations at both depths were more prominent in winter, likely a 

reflection of storm mixing or runoff events. Dissolved oxygen levels were higher at 5 m than 30 

m throughout the experiment; however, we observed more stable and consistently low dissolved 

oxygen readings at 30 m during the spring due to increased water column stratification preventing 

vertical mixing (Figure 2C, Figure S1, Figure S2). Chl-a, data collected from the Dabob Bay 

ORCA monitoring buoy over the last ten years was used as a proxy for phytoplankton biomass 

(Figure S3). There are several years of data missing, and in some instances, there were no data or 

only one year worth of data for a particular day of the year, namely in December and January. The 

spike in chl-a at 5 m in January may be an artifact of a single year of data and may not be 
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representative of the annual patterns. Overall, 30 m often has lower chlorophyll than 5 m, and most 

spikes (representing potential algal blooms) were seen in April and May. pCO2 levels were 

consistently higher at the 30 m depth, especially during the spring when levels reached 3738 µatm 

(pHT = 7.09, Ωara = 0.20) at 30 m and 1002 µatm (pHT = 7.62, Ωara = 0.70) at 5 m on May 30, 

2017. pCO2 levels were lower at 5 m than 30 m during both seasons (Figure 2D, Figure S1). Both 

pHT and aragonite saturation state remained higher throughout the experiment at 5 m depth than 

30 m (Figure 2E and 2F, Table 1). pHT at the 5 m depth ranged between 7.62 to 8.42, and at 30 m 

depth pHT ranged between 7.09 to 7.81. Ωara ranged between 0.7 and 2.7 at 5 m and between 0.2 

and 0.7 at 30 m.  

 

3.2. Growth 

Growth rates based on shell height were 129% and 125% higher across seasons at 5 m than that at 

30 m depth in mussel and scallops, respectively (F2,213 = 316.3, F2,182 = 231, p < 0.001, p < 0.001, 

Figure 4A and 4B). Mussels and scallops at 5 m depth showed higher growth rates in the spring 

compared to the winter (p = 0.022, p = 0.017, Figure 4A and 4B) and no seasonal differences in 

growth rates were observed at 30 m depth (p = 0.99, p = 0.35). Growth rates in mussels were 124% 

and 132% greater at the 5 m depth than at the 30 m depth in winter and spring. Growth rates in 

scallops were 136% and 115% greater at 5 m depth than at the 30 m depth in winter and spring.  

 

3.3. Shell Strength 

Shell strength differed based on seasons and depth for mussels (season – F1,247 = 152.49, p < 0.001, 

depth – F1,247 = 52.34, Figure 4C). Mussel shells acclimatized to 5 m depth were 40% and 22% 

stronger than deep-acclimatized mussels in the winter and spring, respectively (p < 0.001, p < 
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0.001, Figure 4C). In scallops, shell strength differed between seasons but not depths (season – 

F1,231 = 6.08, p = 0.002, depth – F1,231 = 2.31, p = 0.13, Figure 4D). Shell strength in scallops only 

differed between two cohorts, i.e., organisms collected at 30 m in the spring were 37% stronger 

than those collected from 5 m in the winter (p = 0.013, Figure 4D). 

 

3.5. Isotopic Signatures  

Isotopic signatures of mussels changed with both season and depth for δ13C, but only with depth 

for δ15N (δ13C season – F2,45 = 128.1, p < 0.001, depth – F1,45 = 407.8, p < 0.001; δ15N season – F2,45 

= 1.17, p = 0.2, depth – F1,45 = 241.9, p < 0.001, Figure 5A, Table S1, Figure S4). Mussels at 5 m 

in spring had higher δ13C values than at 5 m in the winter. Overall higher δ13C values were found 

at 30 m than 5 m. δ15N values in mussels differed between depths; higher δ15N values were found 

at 30 m than 5 m (both seasons, Figure S4). At 5 m, δ15N values were higher in the spring than the 

winter; however, at 30 m, δ15N values were higher in the winter than the spring (p < 0.001, p = 

0.03, respectively, Figure 5C, Table S1, Figure S4). δ13C and δ15N isotopic signatures of scallops 

placed at 30 m were not different from isotopic signatures measured at the beginning of the 

experiment (T0, December 10, 2016). C:N ratios (Figure S4) were affected by both depth and 

season (depth – F1,36 = 215.2, p < 0.001, season – F1,36 = 222.7, p < 0.001), and had the highest 

ratio in the 5 m spring cohort. 

 

Scallops showed similar patterns in δ13C levels to mussels (season – F2,45 = 96.73, p < 0.001, depth 

– F1,45 = 180.50, p < 0.001, Figure 5B, Table S1, Figure S4). Scallops from 5 m in spring had 

higher δ13C values than at 5 m in the winter (F2,45 = 96.73, p < 0.001). Higher δ13C values were 

found at 30 m than 5 m. δ15N values in scallops differed between seasons and depth (season – F2,45 
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= 11.41, p < 0.001, depth – F1,45 = 196.01, p < 0.001). Similar to δ13C, higher values of δ15N were 

observed at 30 m than 5 m (p = 0.003, p < 0.001, respectively, Figure 5B, Table S1, Figure S4). 

T0 scallops had similar signatures to the 30 m depths for δ15N, and for δ13C signatures were similar 

to all cohorts except 5 m winter. C:N ratios were higher in the spring than winter (season – F1,45 = 

14.09, p < 0.001,) and were higher at 5 m than 30 m in both seasons (depth – F1,45 = 20.57, p < 

0.001).   

 

4. Discussion 

4.1. Seawater Chemistry  

Puget Sound’s Hood Canal experiences seasonal hypoxia and strong stratification due to warming, 

upwelling, riverine, and anthropogenic nutrient inputs (Khangaonkar et al., 2018). Our results 

show a relatively well-mixed water column in the winter and increasing stratification as the water 

warms in the spring. Temperatures experienced by shellfish in our experiment were as high as 18.8 

°C and as low as 6.8 °C. In Hood Canal, salinity is typically affected by external freshwater input 

and precipitation (Reum et al., 2014). The lower salinity values at 5 m in spring are likely due to 

the outflow of snowmelt and terrestrial runoff, which creates a freshwater lens containing high 

nutrient load (Khangaonkar et al., 2018). Strong spring stratification and warmer surface waters in 

Hood Canal can lead to increased phytoplankton blooms on the surface and metabolic influences 

on oxygen concentrations and carbonate chemistry at all depths (Lowe et al., 2019).  

 

For the majority of the experiment, pCO2 values were above 1000 µatm (Ωara = 0.2 to 0.6, pHT = 

7.09 to 7.60) at the 30 m depth, which exceeds the global surface ocean average pCO2 levels 

projected by IPCC (2014) for year 2100. An aragonite saturation state less than 1 is of concern 
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because bivalves biomineralize aragonite to form their hard shells and prolonged undersaturation 

may lead to shell corrosion, and deployed mussels and scallops experienced these conditions at 5 

m in winter and at 30 m throughout the experiment (Feely et al., 2008; Miller et al., 2009). Oxygen 

concentrations were relatively high at 5 m in both season, while they were more variable but tended 

to be lower at 30 m during winter, although levels observed never fell to values where widespread 

shellfish mortality might be expected (Vaquer-Sunyer and Duarte, 2008).   

4.2. Growth and Shell Strength 

Growth of mussels and scallops acclimatized to 5 m was > 100% higher than those from the 30 m 

depth. In a similar study, the giant scallop, Placopecten magellanicus, held at different depths in 

Newfoundland, Canada, had higher growth rates at the shallow 10 m depth when compared to 

deeper depths (20 and 30 m) (MacDonald and Thompson, 1985). In our study, higher growth at 

shallow depths is likely due to a combination of multiple factors such as higher aragonite saturation 

state, DO, food availability, and overall warmer temperatures, especially during the spring. 

Similarly, P. magellanicus had faster growth rates in shallower water (10 m) where temperatures 

and food availability were higher. If growers seek fast shellfish growth, it is advisable to place 

bivalves for grow-out in the top few meters of the water column, where temperatures and carbonate 

chemistry are more favorable. In our study, shellfish from “spring” season had acclimatized longer 

than shellfish from the “winter” season, potentially confounding the interaction between 

acclimatization time and season. 

With unfavorable carbonate chemistry, more energy may be expended on shell formation and there 

may be a disruption in extra- and intracellular acid-base equilibria, causing a trade-off of metabolic 
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energy away from growth (Michaelidis et al., 2005; Pörtner et al., 2005; Stevens and Gobler, 2018; 

Wittmann and Pörtner, 2013). Low DO levels at deeper depths (generally around 2 – 3 mg/L for 

bivalves) may reduce the ability of shellfish’s ctenidia to extract oxygen from the water to sustain 

basic cellular function, possibly redirecting energy away from growth and toward acclimatory and 

somatic maintenance processes (Carrington et al., 2015; Froehlich et al., 2016; Moullac et al., 

2007; Sokolova et al., 2012; Stevens and Gobler, 2018). A similar study found that scallop 

(Argopecten irradians) experienced significantly lower growth rates when exposed to water 

collected from Forge River Estuary, New York, which has naturally low DO and pH levels (Gobler 

et al., 2014).  

Mussels acclimatized to 5 m depth had considerably stronger shells than those from 30 m depth. 

This is possibly due to favorable aragonite saturation states at the surface. These results are 

consistent with previous studies in which calcifying species, a snail (Austrocochlea porcata) and 

the blue mussel (Mytilus edulis), had weaker shells when exposed to acidified conditions (Coleman 

et al., 2014; Li et al., 2015). In Washington, it is predicted that increased uptake of anthropogenic 

CO2 in the future will cause the aragonite saturation horizon to shoal further than it already has, 

making suitable habitat for calcifiers scarce (Feely et al., 2012). As suggested by Green et al. 

(2009), “death by dissolution” is a very real possibility for bivalves as climate change progresses. 

In contrast to mussels, the strongest scallop shells were found at 30 m depth in the spring, whereas 

the most fragile shells were found at 5 m during the winter. Similar results have been seen in the 

gastropod mollusk, Subninella undulata, whose shell strength was not directly related with pH 

treatments of 8.2 and 7.7 after 65 days of exposure (Coleman et al., 2014). A previous study 
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subjected C. gigantea to 1050 µatm and 365 µatm pCO2 for six weeks and shells were subsequently 

CT-scanned to measure shell density (Alma et al., 2020). Scallops from this study had a 

significantly lower periostracum density in the high pCO2 treatments suggesting that this outer 

layer dissolves first when compared to inner shell layers. We did not measure the thickness of the 

periostracum (organic outermost layer of the shell) layer in our study, however, it is probable that 

the scallops from our experiment were protected from dissolution due to their thick periostracum, 

which may explain the compromised growth rates but not shell strength (Gazeau et al., 2013). C. 

gigantea is known to be more abundant at deeper depths, up to 80 m deep, where aragonite 

saturation in Hood Canal reaches levels of ~0.5 in the colder, well-mixed months, and ~0.6 in the 

warmer highly stratified months (Feely et al., 2010; Whyte et al., 1990). In comparison,  M. 

galloprovincialis can be found up to 40 m deep where aragonite saturation in Hood Canal can 

reach ~0.7 in the cold months and ~0.8 in the warm months (CABI, 2020; Feely et al., 2010), so it 

is possible that the native C. gigantea has evolved better biomineralization mechanisms to cope 

with acidified conditions than the more shallow-adapted M. galloprovincialis.  

 

4.4. Isotopic Signatures 

Analysis of stable isotope signatures can provide a time-integrated assessment of an individual’s 

diet origin and insight into the influence of the environment on their assimilation rate (Gaillard et 

al., 2017; Galimany et al., 2017; Lowe et al., 2019). A small change in the C:N ratio may be 

indicative of environmental stress and alterations in the system’s food web dynamics (Patterson 

and Carmichael, 2018). δ13C can be used as an indicator of primary production sources, while δ15N 

can be used as a proxy for trophic position and sub-lethal stress (Michener and Lajtha, 2008). 

Differences in δ13C manifested as lower (more negative) δ13C levels in both species at the 5 m 
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depths, especially in winter, likely as a reflection of increased terrestrial C3 plant input, which has 

a lower δ13C signature. Similar seasonal differences have also been seen in wild-sampled Hood 

Canal Pacific oysters, Crassostrea gigas, who exhibited lower δ13C in the winter (November–

December) when compared to summer (June–August) (Conway-Cranos et al., 2015), suggesting 

that the oysters collected in summer had less terrestrial-based organic food sources than those 

collected in winter. The isotopic pattern seen in the shallow winter cohort may point to increased 

runoff due to snowmelt or precipitation, directing more terrestrial food sources into Hood Canal 

(Simenstad and Wissmar, 1985). Differences across depths can be seen in both δ13C and δ15N, in 

which the 30 m depth had higher isotopic values than the 5 m depth, for both species. A similar 

isotopic signature to our study was seen in the oyster C. gigas, where those grown close to the 

bottom near a seagrass bed had higher δ13C and δ15N when compared to oysters grown offshore 

(Hori et al., 2019). Oysters grown offshore had a more pelagic-based diet, while those grown on 

tidal flats ingested a diet of both benthic and pelagic matter, resulting in higher nitrogen content 

and higher quality protein. C. gigas acclimated to Hood Canal conditions (15 km from our site) 

are suggested to have relied on a diet of predominantly salt marsh vegetation-derived carbon, 

resulting in a reduced δ13C signature (Conway-Cranos et al., 2015). It can also be postulated that 

cohorts with higher δ13C were acclimatized to environments with more terrestrial C4 plant 

particulates (e.g., grasses), marsh grass, algal primary productivity, eelgrass, and marine 

particulate organic matter (POM), all of which are relatively enriched in 13C compared to terrestrial 

C3 plants (e.g., trees). Consumers integrate the carbon isotopic composition of their diet into their 

bodies, and can thus reflect changing food sources through time (Hama et al., 1983; Michener and 

Lajtha, 2008). This is a plausible explanation for the carbon isotopic signatures observed in 

mussels and scallops, as conditions at 5 m in the spring likely had higher phytoplankton 
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productivity than in the winter, and the 30 m locations had a high abundance of marine POM, 

while the 5 m location in the winter had mainly terrestrial POM.  

Higher δ15N values at 30 m may be correlated with higher denitrification at depth, in which 

microbial metabolic activity preferentially uses lighter nitrogen isotopes, leaving the surroundings 

enriched in δ15N (isotopic fractionation) (Schlesinger and Bernhardt, 2013). Lower dissolved 

oxygen at depth may have created a more favorable environment for denitrification and further 

increased δ15N. Subsequently when phytoplankton uptake nutrients associated with denitrification, 

their δ15N signature increases which may be reflected in bivalves who consume them due to the 

trophic enrichment factor (Zhang et al., 2010). Bivalves at deeper depths may also consume a 

higher proportion of POM, which is comprised largely of denitrified particles and organic debris, 

which will often contain an enriched δ15N signature (Michener and Lajtha, 2008).  Additionally, 

sub-lethal environmental stress responses in bivalves can prompt an increase in metabolic 

processes and disrupt nitrogen processing resulting in increased preferential excretion of light 

nitrogen isotopes into the environment leaving tissues enriched with δ15N (Patterson and 

Carmichael, 2018). For example, in the Eastern oyster Crassostrea virginica, those who were field-

acclimatized to 3.66 mg/L DO had lower growth and a higher δ15N signature when compared to 

those acclimatized to 6 mg/L. This suggests excess excretion of lighter δ14N by bivalves due to 

stressful conditions may be also be correlated with changes in metabolic processes like growth or 

starvation (Patterson and Carmichael, 2018). Changes in environmental δ15N may also be 

attributed to a multitude of factors including changes in agricultural runoff, increased storm 

activity, or anthropogenic pollution (Piola et al., 2006); therefore, it is difficult to trace changes in 

organismal δ15N without measurements of source end-members. A longer- term study of tissue-
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specific and environmental end-member isotopic signatures may provide further insight into our 

results. 

 

5. Conclusion 

We identified major differences in shellfish growth, shell strength, and stable isotopes across 

seasons and depths. Both of our study species showed faster growth at 5 m than 30 m. Shell 

strength changed with depth in mussels (higher at 5 m than 30 m) but did not change with depth 

in the scallops. Both mussels and scallops had low δ13C and δ15N levels at the 5 m depth in winter.  

The acclimatization capacity of scallops and mussels has been shown in this study, and this 

information may inform shellfish farmers to optimize marketable attributes, especially as climate 

change progresses. Our results are especially relevant for the burgeoning rock scallop aquaculture 

market, farms who grow mussels on long lines, and aquaculture locations that are already starting 

to experience the effects of climate change. Future research that acclimatizes bivalves for a longer 

period of time, and that examines transgenerational effects, metabolism, isotopic endmembers, and 

genetic expression should be implemented. 
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